Pages

Sunday, January 29, 2012

Test title

test content

Saturday, July 30, 2011

Fibonacci numbers

Mathematica
Note, that this implementation exists. Algorithm is:
Fibonacci[n_] := Round[GoldenRatio^n/Sqrt[5]]

Be aware, that this formula:
can not be trivially applied in other languages.

Java
In Java, we have arbitrarily large integers and decimals, but prebuilt classes lack the functionality (it's a shame). For example we can not easily take root of 5. To do this, we would need to use a library like JScience or write Newton approximation method (what can be quite error prone process).

/**
* Gives the Fibonacci number.
*
* @param n
* element to return.
* @return Fibonacci and Negafibonacci numbers.
*/
public static BigInteger fibonacci(final int n) {
if (n == 0)
return BigInteger.ZERO;
int an = Math.abs(n);
BigInteger[] result = { BigInteger.ONE, BigInteger.ONE };
BigInteger[] tmp = new BigInteger[2];
for (int i = 1; i < an; i++) {
tmp[0] = result[0].add(result[1]);
tmp[1] = result[0];
result = Arrays.copyOf(tmp, tmp.length);
}
return ((n < 0) && (n % 2 == 0)) ? result[1].negate() : result[1];
}
view raw gistfile1.java hosted with ❤ by GitHub

C#
In C#, there is no arbitrarily large decimals. It does have class decimal (with 28-29 significant digits), but assuming that Math class supports it, is just asking too much (it's a shame). But thumbs up, for it at least has BigInteger.

/// <summary>
/// Gives the Fibonacci number.
/// </summary>
/// <remarks>using System.Numerics;</remarks>
/// <param name="n">element to return.</param>
/// <returns>Fibonacci and Negafibonacci numbers.</returns>
public static BigInteger fibonacci(int n)
{
if (n == 0)
return BigInteger.Zero;
int an = Math.Abs(n);
int nr = 2;
BigInteger[] result = { BigInteger.One, BigInteger.One };
BigInteger[] tmp = new BigInteger[nr];
for (int i = 1; i < an; i++)
{
tmp[0] = BigInteger.Add(result[0], result[1]);
tmp[1] = result[0];
Array.Copy(tmp, 0, result, 0, 2);
}
return ((n < 0) && (n % 2 == 0)) ? -result[1] : result[1];
}
view raw gistfile1.cs hosted with ❤ by GitHub

Thursday, July 28, 2011

Binary search


Java
In java, Collections/Arrays class contains binary search.
  1. Collections.binarySearch(list, key);  
  2. Arrays.binarySearch(array, key);  
My naive generic implementation is recursive and ignores the fact, that I should use ListIterator for data structures, that do not have random access (ex. LinkedList).
/**
* Function returns location of unique item in a sorted list.
*
* @param <T> Class, that implements comparable interface.
* @param data list of elements
* @param searchValue element to search for
* @return Location of the the element. If item is not found, -1 is returned.
* @throws java.lang.NullPointerException
* If any checked element in the list is 'null'.
*/
public static <T extends Comparable<? super T>> //
int binarySearch(final List<T> data, T searchValue)
throws java.lang.NullPointerException {
return binarySearch(data, searchValue, 0, data.size() - 1);
}
/**
* Function returns location of unique item in a sorted list.
*
* @param <T> Class, that implements comparable interface.
* @param data list of elements
* @param searchValue element to search for
* @param left lower bound
* @param right upper bound
* @return Location of the the element. If item is not found, -1 is returned.
* @throws java.lang.NullPointerException
* If any checked element in the list is 'null'.
*/
public static <T extends Comparable<? super T>> //
int binarySearch(final List<T> data, T searchValue, int left, int right)
throws java.lang.NullPointerException {
final int NOT_FOUND = -1;
if (right < left)
return NOT_FOUND;
int mid = (left + right) >>> 1;
int cmp = searchValue.compareTo(data.get(mid));
if (cmp > 0)
return binarySearch(data, searchValue, mid + 1, right);
if (cmp < 0)
return binarySearch(data, searchValue, left, mid - 1);
return mid;
}
view raw gistfile1.java hosted with ❤ by GitHub

C#
In C#, list itself and Arrays class contains binary search.
list.BinarySearch(key);
Array.BinarySearch(array, key);
My naive Java implementation translated to C#.
/// <summary>
/// Function returns location of unique item in a sorted list.
/// </summary>
/// <typeparam name="T">Class, that implements comparable interface.</typeparam>
/// <param name="data">list of elements</param>
/// <param name="searchValue">element to search for</param>
/// <returns>Location of the the element. If item is not found, -1 is returned.</returns>
/// <exception cref="System.NullReferenceException">
/// If any checked element in the list is 'null'. (Other then first one)
/// </exception>
public static int binarySearch<T>(IList<T> data, T searchValue)
where T : IComparable<T>
{
return binarySearch(data, searchValue, 0, data.Count());
}
/// <summary>
/// Function returns location of unique item in a sorted list.
/// </summary>
/// <typeparam name="T">Class, that implements comparable interface.</typeparam>
/// <param name="data">list of elements</param>
/// <param name="searchValue">element to search for</param>
/// <param name="left">lower bound</param>
/// <param name="right">upper bound</param>
/// <returns>Location of the the element. If item is not found, -1 is returned.</returns>
/// <exception cref="System.NullReferenceException">
/// If any checked element in the list is 'null'. (Other then first one)
/// </exception>
public static int binarySearch<T>(IList<T> data, T searchValue, int left, int right)
where T : IComparable<T>
{
const int NOT_FOUND = -1;
if (right < left)
return NOT_FOUND;
int mid = (int)((uint)(left + right) >> 1);
int cmp = searchValue.CompareTo(data[mid]);
if (cmp > 0)
return binarySearch(data, searchValue, mid + 1, right);
if (cmp < 0)
return binarySearch(data, searchValue, left, mid - 1);
return mid;
}
view raw gistfile1.cs hosted with ❤ by GitHub

Mathematica
In mathematica, Combinatorica library contains binary search.
BinarySearch[list, key]

Wednesday, July 27, 2011

Merge sort

Will take O(n * log (n)) time, and does not depend on input.

Java
/**
* Method sorts a list ascendingly using merge sort algorithm.
*
* @param <T>
* Non null class, that implements comparable interface.
* @param data
* List of T type elements, to be sorted ascendingly.
* @throws java.lang.NullPointerException
* If any element in the list is 'null'.
* @throws java.lang.UnsupportedOperationException
* If list is unmodifiable or immutable.
*/
public static <T extends Comparable<? super T>> //
void mergeSort(final List<T> data) {
mergeSort(data, 0, data.size() - 1);
}
/**
* Method sorts a part of list ascendingly using merge sort algorithm.
*
* @param <T>
* Non null class, that implements comparable interface.
* @param data
* List of T type elements, to be sorted ascendingly.
* @throws java.lang.NullPointerException
* If any element in the list is 'null'.
* @throws java.lang.UnsupportedOperationException
* If list is unmodifiable or immutable.
*/
public static <T extends Comparable<? super T>> //
void mergeSort(final List<T> data, int lowBound, int highBound) {
if (lowBound >= highBound)
return;
// partition
int maxLowBound = (lowBound + highBound) / 2;
int minHighBound = maxLowBound + 1;
mergeSort(data, lowBound, maxLowBound);
mergeSort(data, minHighBound, highBound);
// merge
boolean comp;
Queue<T> storageLow = new LinkedList<T>();
Queue<T> storageHigh = new LinkedList<T>();
for (int i = lowBound; i <= maxLowBound; i++)
storageLow.add(data.get(i));
for (int i = minHighBound; i <= highBound; i++)
storageHigh.add(data.get(i));
while ((storageLow.size() > 0) && ((storageHigh.size() > 0))) {
comp = storageLow.peek().compareTo(storageHigh.peek()) < 0;
data.set(lowBound++, comp ? storageLow.poll() : storageHigh.poll());
}
while (storageLow.size() > 0)
data.set(lowBound++, storageLow.poll());
while (storageHigh.size() > 0)
data.set(lowBound++, storageHigh.poll());
}
view raw gistfile1.java hosted with ❤ by GitHub

C#
/// <summary>
/// Method sorts a list ascendingly using merge sort algorithm.
/// </summary>
/// <typeparam name="T"> Non null class, that implements comparable interface.
/// </typeparam>
/// <param name="data">List of T type elements, to be sorted ascendingly.</param>
/// <exception cref="System.NullReferenceException">
/// If any element in the list is 'null'. (Other then first one)
/// </exception>
/// <exception cref="System.NotSupportedException">
/// If list is readonly.
/// </exception>
public static void mergeSort<T>(IList<T> data) where T : IComparable<T>
{
mergeSort(data, 0, data.Count - 1);
}
/// <summary>
/// Method sorts a part of list ascendingly using merge sort algorithm.
/// </summary>
/// <typeparam name="T"> Non null class, that implements comparable interface.
/// </typeparam>
/// <param name="data">List of T type elements, to be sorted ascendingly.</param>
/// <exception cref="System.NullReferenceException">
/// If any element in the list is 'null'. (Other then first one)
/// </exception>
/// <exception cref="System.NotSupportedException">
/// If list is readonly.
/// </exception>
public static void mergeSort<T>(IList<T> data, int lowBound, int highBound)
where T : IComparable<T>
{
if (lowBound >= highBound)
return;
// partition
int maxLowBound = (lowBound + highBound) / 2;
int minHighBound = maxLowBound + 1;
mergeSort(data, lowBound, maxLowBound);
mergeSort(data, minHighBound, highBound);
// merge
bool comp;
Queue<T> storageLow = new Queue<T>();
Queue<T> storageHigh = new Queue<T>();
for (int i = lowBound; i <= maxLowBound; i++)
storageLow.Enqueue(data[i]);
for (int i = minHighBound; i <= highBound; i++)
storageHigh.Enqueue(data[i]);
while ((storageLow.Count() > 0) && ((storageHigh.Count() > 0)))
{
comp = storageLow.Peek().CompareTo(storageHigh.Peek()) < 0;
data[lowBound++] = comp ? storageLow.Dequeue() : storageHigh.Dequeue();
}
while (storageLow.Count() > 0)
data[lowBound++] = storageLow.Dequeue();
while (storageHigh.Count() > 0)
data[lowBound++] = storageHigh.Dequeue();
}
view raw gistfile1.cs hosted with ❤ by GitHub

Tuesday, July 26, 2011

Insertion sort

Efficient for small lists, with size less then 30.

Special cases are:
  • if list is almost sorted, it will be near linear time
  • if sorted list is reversed, it will be quadratic time

Java
/**
* Method sorts a list ascendingly using insertion sort algorithm.
*
* @param <T>
* Non null class, that implements comparable interface.
* @param data
* List of T type elements, to be sorted ascendingly.
* @throws java.lang.NullPointerException
* If any element in the list is 'null'.
* @throws java.lang.UnsupportedOperationException
* If list is unmodifiable or immutable.
*/
public static <T extends Comparable<? super T>> //
void insertionSort(final List<T> data)
throws java.lang.NullPointerException,
java.lang.UnsupportedOperationException {
int i, j;
for (i = 1; i < data.size(); i++) {
T temp = data.get(i);
j = i;
while ((j > 0) && (temp.compareTo(data.get(j - 1)) < 0)) {
data.set(j, data.get(j - 1));
j--;
}
data.set(j, temp);
}
}
view raw gistfile1.java hosted with ❤ by GitHub

C#
/// <summary>
/// Method sorts a list ascendingly using insertion sort algorithm.
/// </summary>
/// <typeparam name="T"> Non null class, that implements comparable interface.
/// </typeparam>
/// <param name="data">List of T type elements, to be sorted ascendingly.</param>
/// <exception cref="System.NullReferenceException">
/// If any element in the list is 'null'. (Other then first one)
/// </exception>
/// <exception cref="System.NotSupportedException">
/// If list is readonly.
/// </exception>
public static void insertionSort<T>(IList<T> data) where T : IComparable<T>
{
int i, j;
for (i = 1; i < data.Count; i++)
{
T temp = data[i];
j = i;
while ((j > 0) && (temp.CompareTo(data[j - 1]) < 0))
{
data[j] = data[j - 1];
j--;
}
data[j] = temp;
}
}
view raw gistfile1.cs hosted with ❤ by GitHub

Sunday, September 13, 2009

Euler Problem 49 solution

Time (s): ~0.002
  1. package margusmartseppcode.From_40_to_49;  
  2.   
  3. import java.util.Arrays;  
  4.   
  5. public class Problem_49 {  
  6.   
  7.  // Call only if: (n>0&&(i%2==0||i%3==0||i%5==0||i%7==0))  
  8.  static boolean isPrimeS(final int n) {  
  9.   final int r = (int) Math.floor(Math.sqrt(n));  
  10.   for (int f = 5; f <= r; f += 6)  
  11.    if (n % f == 0 || n % (f + 2) == 0)  
  12.     return false;  
  13.   return true;  
  14.  }  
  15.   
  16.  static boolean isPerm(char[] a, char[] b) {  
  17.   if (a.length != b.length)  
  18.    return false;  
  19.   Arrays.sort(a);  
  20.   Arrays.sort(b);  
  21.   return Arrays.equals(a, b);  
  22.  }  
  23.   
  24.  static boolean arePerms(int... n) {  
  25.   if (n.length == 0)  
  26.    return true;  
  27.   for (int i = 1; i < n.length; i++)  
  28.    if (!isPerm(("" + n[i - 1]).toCharArray(), ("" + n[i])  
  29.      .toCharArray()))  
  30.     return false;  
  31.   return true;  
  32.  }  
  33.   
  34.  static boolean arePrimes(int... n) {  
  35.   for (int i : n)  
  36.    if (!isPrimeS(i))  
  37.     return false;  
  38.   
  39.   return true;  
  40.  }  
  41.   
  42.  public static void main(String[] args) {  
  43.   int a, b, c;  
  44.   a = b = c = 0;  
  45.   
  46.   for (a = 1489;; a += 2) {  
  47.    if (a % 3 == 0 || a % 5 == 0 || a % 7 == 0)  
  48.     continue;  
  49.      
  50.    b = a + 3330;  
  51.    c = a + 6660;  
  52.   
  53.    if (arePrimes(a, b, c))  
  54.     if (arePerms(a, b, c))  
  55.      break;  
  56.   }  
  57.   System.out.println("" + a + b + c);  
  58.  }  
  59. }  

Euler Problem 48 solution

Time (s): ~0.034
  1. package margusmartseppcode.From_40_to_49;  
  2.   
  3. public class Problem_48 {  
  4.  public static void main(String[] args) {  
  5.   long result = 0, d10 = 10000000000L;  
  6.   for (long u = 1, tmp = u; u <= 1000; result += tmp, ++u, tmp = u)  
  7.    for (long v = 1; v < u; ++v)  
  8.     tmp = (tmp * u) % d10;  
  9.   
  10.   System.out.println(result % d10);  
  11.  }  
  12. }  
Time (s): ~0.224
  1. package margusmartseppcode.From_40_to_49;  
  2.   
  3. import java.math.BigInteger;  
  4.   
  5. public class Problem_48 {  
  6.  // Note: i = 2 !!!  
  7.  public static void main(String[] args) {  
  8.   BigInteger num = BigInteger.ONE;  
  9.   for (int i = 2; i < 1000; i++)  
  10.    num = num.add(BigInteger.valueOf(i).pow(i));  
  11.   String result = num.toString();  
  12.   System.out.println(result.substring(result.length() - 10));  
  13.  }  
  14. }